
Abstract Using Correlation Weighting of Local Graph
Invariants is considered for molecular descriptors for
computing total molecular electronic energies. Instead of
using prescribed weights for paths and vertices, we have
optimized such weights so that the standard error in the
regression analysis is as small as possible. Results com-
pare favorably with respect to the employment of other
common topological descriptors.
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Introduction

The employment of graph-theoretical structure-descriptors
represents a meaningful step forward in the search for
suitable predictive models in chemistry, biology and phar-
macology and remains within the bounds of the philoso-
phy of the increasing use of mathematical and computa-
tional methods in contemporary science.

The basis for these models in chemistry is the study
of the Quantitative Structure-Property and Structure-
Activity Relationships (QSPR and QSAR, respectively),
in which the structural information is encoded into num-
bers obtained from graph-theoretical invariants [1, 2, 3]
(i.e. they do not depend on the vertex numbering).

Different graph characteristics or invariants have been
used in the definition of molecular topological indices.
Because the pool of molecular descriptors has increased
dramatically during the last decade, the problem of se-
lecting them is a current topic of interest to many re-

searchers [4, 5]. A remarkable improvement is found in
the regression results when they are based on the use of
the path numbers as descriptors instead of the connectiv-
ity indices. The standard error is usually also improved
(i.e. it decreases) when several suitable path numbers are
applied [4].

The total molecular electronic energy is the most im-
portant molecular parameter from which one can derive
the great majority of the microscopic properties neces-
sary to characterize molecules. The usual way to com-
pute this quantity for a given molecular arrangement is
to resort to the standard methods of electronic structure
theory [6]. But, strange to say, there has not be any study
aimed at mimicking this relevant feature via QSPR theo-
ry, although Bonchev and Kier calculated electronic
charges in alkanes through topological indices [7]. Need-
less to say, it would be really valuable to have at one’s
disposal a straightforward and economical method of
computing total electronic molecular energies with good
accuracy, avoiding the sometimes troublesome first-prin-
ciples methods.

Thus, we have deemed it appropriate to present a sim-
ple procedure to calculate accurate total molecular elec-
tronic energies within the realm of QSPR theory resort-
ing to Correlation Weighting of Local Graph Invariants
(CWLGI).

The paper is organized as follows: the next section
deals with the definition of the chosen descriptors, giv-
ing their foundations and pointing out their usefulness as
well as discussing the antecedents for the particular form
of the index. Then we show some illustrative numerical
results derived from several common regression equa-
tions and compare them with exact data. Finally, we ana-
lyze the possibility of extending the employment of this
sort of weighted path descriptor to study other physical-
chemistry properties and biological activities and to ap-
ply it together with others complementing graph theoret-
ical indices in order to reach an optimum description in
QSPR/QSAR.
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Correlation weighting of local graph invariants

Although graph theory is now an integral branch of com-
binatorial analysis, it began as a part of topology and
even today, most electrical engineers and many chemists
working in network theory still consider “topology” to
be entirely synonymous with “graph theory”.

Graph theory was independently discovered on sever-
al occasions and three names deserve special mention:
Euler, Kirchhoff, and Cayley [8]. Two kinds of corre-
spondence between graphs and chemical categories have
found numerous applications in chemistry:

a) A graph corresponds to a molecule, i.e. points sym-
bolize atoms and lines symbolize chemical covalent
bonds. These may be called structural or constitu-
tional graphs.

b) A graph corresponds to a reaction mixture, i.e. points
symbolize chemical species and lines symbolize con-
versions between these species. These may be called
reaction graphs.

The former type of graph gave Cayley the incentive to
derive a procedure for counting the constitutional iso-
mers of alkanes and later it led Polya towards the discov-
ery of his powerful counting theorem [9]. Thus, chemis-
try is an acknowledged origin for the beginning and 
development of graph theory, and the mathematicians
Cayley and Polya published papers in chemical journals.

With chemistry as one of its breeding grounds, graph
theory is well adapted for solving chemical problems,
both from the high degree of abstraction evidenced by
the generality of such concepts as points, lines, and
neighbors, as well as by the combinatorial derivation of
many graph-theoretical concepts, which correspond to
the essence of chemistry viewed as the study of combi-
nations between atoms.

Topological indices are numerical quantities derived
from molecular graphs representing molecules. Some-
times weighted graphs, multigraphs, or weighted pseudo-
graphs are used to represent the relevant aspects of the
chemical species [10].

Here we describe the CWLGI, which has the general
form

DCW=Σall vertices [CW(a(i))+CW(VD(i))] (1)

where Correlation Weights (CW) for a given element
(a(i)) and for the corresponding Vertex Degree (VD) are
determined by means of an optimization procedure to re-
produce a physical-chemistry property. That is to say,
CW(a(i)) and CW(VD(i)) are computed in such a way
that they give the largest possible correlation coefficient
between the numerical value of the property under con-
sideration and the descriptor‘s value (DCW).

Obviously, the procedure demands the employment of a
training set without any information at all about the struc-
tures of the test set. It must be pointed out that the usual
additive contributions are found on the basis of the mini-
mization of standard errors. Additive schema are based on
computing the property P via a relationship such as

P=Σfragments AC(i) (2)

where AC(i) is the additive contribution of the i-th frag-
ment to the P value of the property. The AC(i) are usual-
ly found by means of an optimization procedure aiming
to give as small as possible values of

s={Σ [Pexperimental-Pcalculated]2}1/2 (3)

However, CW‘s are calculated in a quite different man-
ner. In fact, they are computed in such a way as to maxi-
mize the correlation coefficient in Eq. (1). After deter-
mining the optimum CW’s, one can calculate the desired
property P via a general formula

P=f(DCW) (4)

The most usual way to choose the function f(DCW) is to
resort to a polynomial form, i.e.

P=a+b DCW+c (DCW)2+d (DCW)3+...... (5)

where a, b, c, d,....are real numbers and are calculated
through a standard fitting procedure.

Results

The methodology described in the previous section for
calculating physical-chemistry properties from DCW has
been applied before [11, 12, 13, 14] and results shown to
be rather satisfactory. Here, we have chosen a set of 49
organic molecules previously analyzed to compute their
enthalpies of formation from ab initio total electronic en-
ergies at the 6-31G* basis set level [15]. This rather
modest set includes molecules composed of H, C, N, O,
F, and Cl atoms and we have divided the whole group in-
to two subsets of 25 and 24 molecules each (a training
set, and a test set, respectively). We have not applied any
special criteria for this particular choice, save that of ob-
taining two equilibrated subsets regarding the number
and kind of atoms in each.

In Tables 1 and 2, we display the complete set of 49
molecules, denoting those included in the training set
and those pertaining to the test set, respectively, together
with the theoretical total electronic energies (TEE). The
CW‘s for total electronic energies corresponding to the
different atoms and vertex degrees are presented in Ta-
bles 3 and 4. 

The linear correlation equation between TEE and
DCW for the training set is

TEE=28.433 DCW(TEE)-0.0629
n=25, s=0.02226 a.u., r=0.999999976, F=471629359 (6)

while the statistical results of applying Eq. (4) to the test
set are

n=24, s=0.03225 a.u., r=0.999999985, F=758011111

These results are not dependent on the particular selec-
tion of the molecules included in the two sets, since 
different choices yield practically the same statistical 
data.
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We have also tried higher order fitting polynomials and
numerical results are also nearly invariant, so that we
have considered it unnecessary to report them here. Those
readers interested in obtaining complete regression equa-
tions can request there from the corresponding author.

In Tables 5 and 6, we display the complete results for
the prediction of TEE together with the DCW‘s. The av-
erage deviation for the training set is 0.0156 a.u. while
this parameter for the test set is 0.0183 a.u. The compar-
ison between calculated and predicted TEE for both sets
is quite good and there is no “pathological behavior”
among these molecules, which seems to show the quite
satisfactory predictive capability of the present ap-
proach. 
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Table 1 Theoretical ab initio total electronic energies (atomic
units) calculated at the 6-31G* basis set level for the training set

Number Molecule Energy (a.u.)a

1 Methane 40.19517
2 Acetylene 76.81783
3 Allene 115.86110
4 Propene 117.07147
5 Dibutyne 152.49793
6 1-Butene 156.10499
7 Isobutene 156.11067
8 Isobutane 157.19896
9 Hydrogen cyanide 92.87520

10 Methylhydrazine 150.20108
11 Acetonitrile 131.92753
12 Cyanogen 184.59122
13 Formaldehyde 113.86633
14 Methanol 115.03542
15 Formic acid 188.76231
16 Dimethyl ether 154.06574
17 Urea 223.98219
18 Methylnitrite 243.66864
19 Difluoromethane 237.89635
20 Trifluoromethane 336.77164
21 Fluoroethane 178.07722
22 Vinylchloride 536.93369
23 Cyclopentane 195.16295
24 Bicyclo[1,1,0]butane 195.16295
25 Cubane 307.39383

a Taken from ref. [15]

Table 2 Theoretical ab initio total electronic energies (atomic
units) calculated at the 6-31G* basis set level for the test set

Number Molecule Energy (atomic units)a

1 Ethylene 78.03172
2 Ethane 79.22785
3 Propyne 115.86432
4 Propane 118.26365
5 1,3-Butadiene 154.91960
6 2-Butyne 154.90925
7 1,4-Pentadiene 193.94093
8 Methylamine 95.20983
9 Ethylamine 134.24761

10 Dimethylamine 134.23885
11 Ketene 151.72467
12 Acetaldehyde 152.91569
13 Ethanol 154.07574
14 Glyoxal 226.59218
15 Acetone 191.96225
16 Fluoromethane 139.03461
17 Fluoroethene 176.88195
18 1,1-Difluoroethene 275.74000
19 Tetrafluoroethene 473.41567
20 1,1-Dicholoethane 997.03094
21 Cyclobutane 156.09720
22 Cyclopendiene 192.79192
23 Cyclopentene 193.97717
24 Cyclohexane 234.20796

a Taken from ref. [15]

Table 3 Correlation Weights
for elements on the total elec-
tronic energies

Atom CW(a(i))

H –0.0532
N 1.8420
F 3.4237
C 1.2592
O 2.5601
Cl 16.0860

Table 4 Correlation Weights
for vertes degrees on the total
electronic energy

Vi (i=1,2,3,4) CW(VD(i))

V1 0.0745
V2 0.0715
V3 0.0716
V4 0.0712

Table 5 Calculated TEE(a.u.) through Eq. (6) for the training mo-
lecular set in Table 1

Molecule DCW –TEE ∆TEE
Number (TEEcalc–TEEab initio)

1 1.41560 40.18685 0.00832
2 2.70400 76.81993 –0.00210
3 4.07750 115.87266 –0.01156
4 4.11980 117.07537 –0.00390
5 5.36540 152.49152 0.00641
6 5.49280 156.11388 –0.00889
7 5.49280 156.11388 –0.00321
8 5.53460 157.30238 –0.00342
9 3.26850 92.87036 0.00484

10 5.28540 150.21688 –0.01580
11 4.64150 131.90887 0.01866
12 6.49440 184.59238 –0.00116
13 4.00800 113.89656 –0.03023
14 4.04720 115.01114 0.02428
15 6.63960 188.72085 0.04146
16 5.42020 154.04965 0.01609
17 7.87780 223.92659 0.05560
18 8.57400 243.72164 –0.05300
19 8.36940 237.90425 –0.00790
20 11.84630 336.76295 0.00869
21 6.26550 178.08406 –0.00684
22 18.88600 536.92274 0.01095
23 6.86500 195.12964 0.03331
24 5.44940 154.87989 –0.00820
25 10.81360 307.40019 –0.00636

Average absolute error=0.0156 a.u.



Discussion

The numerical data given in the preceding section show
the high-quality results based on CWLGI, which on one
hand yield very accurate total molecular electronic en-
ergies and, on the other hand, give a correlation equa-
tion with significantly low standard error. These find-
ings open the possibility of extending this sort of study
for other physical-chemistry properties as well as bio-
logical activities using this new kind of topological des-
criptor.

It would be also interesting to employ multiple re-
gression analysis based on suitable graph descriptors
combined with the orthogonalization procedure in order
to reach optimum structure-property-activity relation-
ships which will surely lead to a meaningful interpreta-
tion of the results. This feature is currently missing from
QSAR/QSPR studies. Work along these lines is presently
being carried out in our laboratories and results will be
published in the near future.

A final comment on the analytical formula (1) to
compute DCW deserves to be made here. In fact, we
have employed an additive relationship between
CW(a(i)) and CW(VD(i)), but it should be equally valid
to resort to another sort of connection between the
CWLGI, for example:

DCW=Σall edges [CW(a(i)) * CW(VD(i)) 
* CW(a(j)) * CW(VD(j))] (7)

where (i,j) is an edge

DCW=Σall vertices [CW(a(i)) * CW(VD(i))] (8)

DCW=Σall vertices [CW(a(i))+CW(VD(i))] (9)

DCW=∏all vertices [CW(a(I)) * CW(VD(i))] (10)

Results obtained using a descriptor such as Eq. (7) for
modeling QSPR on enthalpies of coordination com-
pounds was reported in ref. [13], while descriptor Eq. (8)
was applied in ref. [14]. The use of Eq. (9) constitutes an
attempt to realise an additive scheme based on calculat-
ing the additive contributions of local graph invariants
(LIs). However, computation via such models is based
upon the formula

Property=A*DCW+B

The “classical” additive scheme based on the LIs may be
organized through the following steps:

1) all CW(x) must be multiplied by the coefficient A, i.e.

Additive Contribution(x)=CW(x) * A

2) the B term must be employed as an extra term in the
formula

Property=Additive Contribution(x)+B

where x is A(i) or VD(i)
The multiplicative scheme Eq. (10) may be an effec-

tive tool for QSAR/QSPR analysis in cases of non linear
correlations between a given property and descriptors
like Eq. (7), Eq. (8), or Eq. (9).

Thus, we have a wide range of possibilities at our dis-
posal for deriving DCW based upon CWLGI. Further-
more, when one resorts to the use of other well-known
topological indices, such as the Hosoya index, [16] 
Wiener index [17], Harary number [8], Randic connec-
tivity indices [18], etc. to compute TEE, it is necessary
to take recourse to equations with several variables to get
an acceptable degree of accuracy as obtained from a lin-
ear one-parameter regression based on CWLGI.

In closing, we deem there are quite conclusive and
well-grounded evidence that CWLGI are suitable tools
for applications in QSAR/QSPR theory and it is worth
analyzing the possibility of studying other properties and
activities. Work on this issue is under current research
and results will be given elsewhere in the future.
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